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There has been increasing interest in the literature in the past few years in obtaining 
and solving the kinetic equations for dense gases and gas mixtures in the hydrodynamic ap- 
proximation [i-I0]. The most progress in deriving both hydrodynamics and also transport 
equations with explicit expressions for the kinetic coefficients has been achieved using the 
kinetic theory of dense gases for rigid spherical molecules, as developed originally by 
Enskog [ii] using intuitive concepts. Enskog obtained a generalized Boltzmann equation 
which formally took into account only binary collisions [12]. However, if the change in the 
free volume per molecule and the screening of molecules by each other are taken into account, 
this theory actually includes triplet correlations. It was later shown that the X factor in 
Enskog's equation is just the local equilibrium pair correlation function [i]. 

Attempts to extend the Enskog theory to more realistic interaction potentials were con- 
sidered in [2-7]. In [13] the Enskog method was extended for a monatomic gas. Comparison 
of the coefficients of viscosity and thermal conductivity calculated in this method for hydro- 
gen and oxygen showed rather good agreement with experiment over wide ranges of temperature 
and pressure up to the liquid state. 

Generalization of the Enskog theory to dense gas mixtures was done by Thorne [12]. How- 
ever, it was shown in [14] that the results of Thorne were not consistent with those derived 
from irreversible thermodynamics. In particular, the diffusion force vectors d i obtained 
from kinetic theory did not agree with those from irreversible thermodynamics. This fact 
prompted a revision of the Enskog equation for dense gas mixtures. A modified Enskog equa- 
tion was introduced in [15, 16]. In [16] it was applied to gas mixtures, and the kinetic 
coefficients were obtained from the linearized form of the equation by the projection oper- 
ator method. The resulting kinetic coefficients satisfied the Onsager reciprocity relations. 
The modified Enskog equation was studied further in [17-19], where the Chapman--Enskog method 
was applied to solve the equation. 

It must be pointed out that the modified equation was derived using the same assumptions 
as in the original Enskog equation. The modification concerns only the localization of the 
function X. However, agreement between kinetic theory and irreversible thermodynamics can be 
obtained for dense gases using the modified Enskog approach. Obviously an analogous modifica- 
tion of the kinetic equations and hydrodynamics can be carried out for the theory of [2, 7]. 

In the present paper the Chapman--Enskog method is used to obtain expressions for the 
"physical" transport coefficients (diffusion, thermodiffusion, thermal conductivity), and it 
is shown that these coefficients satisfy the Onsager relations. It is also shown that in 
dense gas mixtures the vector di appearing in the Chapman--Enskog method cannot be identified 
with the thermodynamic diffusion force vector as in the case of a dilute gas. The equations 
of heat and mass transport are obtained in a form which is identical to the corresponding 
expressions derived in irreversible thermodynamics. 

I. We consider an N-component, heat-conducting gas mixture close to thermodynamic 
equilibrium. Then for an isotropic mixture the reduced heat fluxes q = Jo and mass diffusion 
fluxes Ji (i = i, ..., N) can be written as linear functions of the thermodynamic forces Xi 
in the form [20] 

N 

$~---- ~e~jXj (i=0, I ..... N), (i.i) 
J=0 
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where the ~ij are phenomenological coefficients. 

If the forces and fluxes are chosen as the quantities appearing in the expression for 
the rate of entropy production due to diffusion and heat conduction, then the phenomenologi- 
calcoefficients aij in (i.i) will satisfy the 0nsager reciprocity relations [20] 

~7 : ~J~ (~, ] : O, t ..... N), (1.2) 

Use of the Gibbs' identity and the conservation laws for the mass of each component and 
the energy leads to the expressions [21] 

N 

~oo VT  + nkT  ~_~ a~ J'o : q - -  T J=~ ~ dj; 

N 

J~ a~~ V T - -  nkT  ~.~ aij r ~ d~ (~ = ~ . . . . .  N) ,  
j = l  

(1.3) 

(1.4) 

where 

N 

q = Jq -- ~, hjJj;  (1.5) 

(1.6) 

Here Jq is the total heat flux; hj and ~j, specific enthalpy and chemical potential per par- 

( O~j] , partial molar volume of the j-th component; mj, ticle of the j-th component; v*j = \ ap 7T,~ i 

nj, xj = nj/n, yj = (mj/m)xj, mass, number density, molar concentration, and mass concentra- 

N N 

tion, respectively, of the j-th component; n= ~ nk, m= ~_~ xkm h , number density and mean 
h=l h=l 

molecular mass of the mixture; k, Boltzmann's constant; and Fj, bulk force acting on the j-th 
component. 

2. We now compare the results from the kinetic theory of dense gas mixtures [17-19] with 
those from irreversible thermodynamics [20, 21], i.e., with Eqs. (1.3) and (1.4). A similar 
comparison was done in [14] for the Thorne theory and it was shown that the transport equa- 
tions cannot in general be written in form (1.3) and (1.4), so that the Thorne theory cannot 
be deduced from irreversible thermodynamics. 

The modified Boltzmann--Enskog equation has the form 

where 

N 

o--7- + c~-77-, = ~ o~j [z~j (r~, r~ + ~jk) /~ (r~)/~ (r~ + ~jk)  - -  
j = l  

- -  %ij (r~, r~- -  ~i~k)/i ( r i ) / j  ( r i - -  o'ijk)! (g j i 'k )  dkdcj (i = 1 . . . . .  N),  

X~j (r~, rj) = i + ~ y nh (rh) fi:~ (ri~)/j~ (r~1~) drk. 
h=l 

(2.1) 

Here ]ij(r~j) = exp (--~j(rij)/kT) is the Mayer function with ~i~(ri~) the interaction poten- 
tial of molecules of types i and j. If the center of one molecule is at point ri, then the 
center of the second molecule at the moment of collision can only be at points ri--oijk , where 
k is a unit vector directed from the center of the j-th molecule to the center of the i-th 
molecule; gji is the relative velocity vector of the colliding molecules. The function Xij 
depends on both r i and rj but its numerical value does not depend on the choice of points r i 
and rj. 

219 



Because we are only interested in heat and mass fluxes, we will assume that bulk forces 
and velocity gradients do not exist in the system. 

The transport coefficients obtained on the basis of (2.1) are described in [19] (see 
also [22]) using the Thorne theory and [23, 24]. The basis of the solution is the Chapman-- 
Enskog method. The zero-order approximation is chosen to be a local Maxwellian distribution 
function 

]~o) / m~ ~/~ ( m~C~ ) �9 : . n i [ ~ )  exp 2kT ' C ~ : c i - - v ,  (2.2) 

where ci is the velocity of a molecule of the i-th kind and v is the mass-averaged velocity 
of the mixture as a whole. 

To first order we obtain a system of N linear nonhomogeneous Fredholm integral equations 
of the second kind for the functions ~ ) ~  ]~)/]~) 

N 

Z %iilii (q)(1)) = - -  ]~o) Li W~ - -  ~ C~.V In T + "-h- di.C~ , (2.3) 

where 
N 

Li = i q- ~ Z B~izO,u~JbtJinJ; 
j = l  

N 
( I n  i ~1/2 m i 

= , �9 = n h a i j  , W i : \ 2 - ~ ]  Ci; ~t~ m i §  %~J l +  Z k. 
h : l  

k ~ ~ 3 2 

2~ 3. t ( 2 . 4 )  

: " q~i - -  ~j ) ~j(g~i.k) dkdcj; 
2t 

' x , c  / v x , 7 )  d~ = xiV In (nikT)-- ~ Vp + ~ /_., I ~j T 
j = l  

+ B~)%~n~ [(bqJ - -  9~) V In T + ;~Vh i i ] } ;  

2~ 

Bihaih)/Bi~. 

Here all quantities are expressed in terms of the molecular diameters ~i (i = i, 2, ..., N). 

Equation (2.3) differs from the corresponding result in the kinetic theory of a dilute 
gas only by the constant coefficients Xij and L i. Thus, we can at once write down the gener- 

al solution to (2.3): 

~) i j ' (2.5) 
�9 = D i ' d j + A i ' V l n T  , 

n 

where the undetermined coefficients DJ i and A i depend on C i. 

We obtain an integral equation for the functions D3 i and A i by substituting (2.5) into 
(2.3) and equating the coefficients of the vectors d'j and V in T: 

N 

yO c,; 
j=l 

(2.6) 

N . 

(2.7) 
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The solution to (2.6) and (2.7) is written as an expansion in Sonine polynomials Smn(x) 
[24] : 

r--1 

D{ E a~(r)cp (W~)Ci; ( 2 . 8 )  u~i,p~3/2 
P=O 

Ai ~] ~'~' cp (W~) Ci, (2.9) - -  u~i,p,,)3/2 

where r is the order of the approximation with respect to Sonine polynomials. The procedure 
is completely analogous to that in [24] and gives the following set of algebraic equations 
for the coefficients dj(r)i, p and a(r). 

l,p 

N r--I 

-~ij ~j,q ----- ~ (Siz - -  gO 6p0, 
~=1 q-o 

N 

E . .,d( r ) yi~i,o = 0; 
i - - 1  

j = l  q=o 
N 
N~. a (r) 
X.~ Yi i,o ~ O, 

i = l  

p = 0 . . . . .  r -  t; (2. i0) 

( 2 . 1 1 )  

p = 0 . . . . .  r; ( 2 . 1 2 )  

(2.13) 

where the APqij are the analogs of the well-known integral brackets of [24] and can be ob- 
tained f rom them by m u l t i p l y i n g  t h e  c o l l i s i o n  c r o s s  s e c t i o n  by X i j .  In  t h e  c a s e  o f  r i g i d  
s p h e r e  m o l e c u l e s ,  t h e  f i r s t  a p p r o x i m a t i o n  f o r  APqij  i s  found in  t h e  fo rm 

N 
x ix  ~ 

A ?  o = - 6 j), 

N 
~ XiXh 

= 

N 

11 __ ' ~  x ixh  

where 
%ij 15k (rni -~- lnj) ~ ; [ 2mimjkT ]1/2 t 

We can  a l s o  w r i t e  ou t  t h e  e q u a t i o n  o f  s t a t e ,  which  h a s  t h e  same fo rm as  i n  t h e  Thorne  
t h e o r y  [14 ,  22] :  

( ) p = n + ~ ninjBijxij kT  ( 2 . 1 4 )  

The equation of state can also be written as a power series in the density: 

p ~  ( ~  ni + ~Bijninj + ~ BijhninjnklkT, 
i j  ij,h / 

(2.15) 

where 

I . h " " 

Before obtaining equations for the energy and mass fluxes, it should be pointed out that 
our procedure will differ from that in [19] where an error was made in obtaining an expres- 
sion for the heat flux. Also, the vector d' i was taken for the diffusive force, in analogy 

221 



to the kinetic theory of a dilute gas. However, for a dense gas d'i, as given by (2.4), 
differs from the thermodynamic diffusion force vector given by (1.6). Following [19], we 
write d' i in terms of a derivative of the chemical potential. 

In order to do this, we first find the chemical potential from the equation of state 
(2.15) with the help of the thermodynamic relations 

where  V i s  t h e  volume o f  t h e  ga s .  

I n t e g r a t i n g  t h i s  e q u a t i o n ,  we o b t a i n  

l n n i +  2"~B~jnj+-~-~B~j.~nm~ + eonst (T). kT J j,~ 
(2.16) 

With the help of (2.16), we can write d' i in the form 
N 

r x i Yi ,rv di : ~ (V~ti)T --- ~ Y P -~ xi  ~ (~ij -~ 2~tijB~jz~jnj) V I n  T 
j= l  

or in terms of the variables xi, p, and T: 

d i = ~ "  x.~ \OXj/T,p,xk(h~_i,j) " Z ~ ( n i v i - - Y i ) V l n p  + k i  I - - T . - ~ + 2  z.~ ~tiiBij%ijnj V l n T .  
j = l , j r  5=1 

Now it is easy to find the difference between the "kinetic" diffusion force vector d' i 
and the thermodynamic diffusion force vector di: 

d~--d~ = a i V ] n  T, (2.17) 

where 

[ ] Pv i 
= x i  i - -  + 2 ~t~jB~j%ijnj . O~ i 

J=l 

Clearly, a i ~ 0 for a dilute gas and the vectors d' i and d i are equal in this case. We 

also note that, in general, ~d$=~di=0. 

Before proceeding to the derivation of the transport equations and Onsager relations, we 
describe the procedure as a whole. Our procedure is analogous to that used in [23] for a 
dilute mixture: From the solution of the kinetic equation, the mass fluxes and reduced heat 
flux are calculated and are expressed in terms of the corresponding thermodynamic forces (in 
the given case, V in T and di). If the coefficients of these forces form a symmetric matrix, 
then the Onsager relations are proven. 

Now we can obtain an expression for the diffusive mass fluxes 

Zi  ~)iVi mi (1)Ao)_7_ 

If we use the expansions (2.8) and (2.9) and formula (2.17), we obtain 

N 
J i  = - -  p iDTiV  In T -  p~ ~ Dijdj, ( 2 .18 )  

J=l 

where the coefficients of diffusion and thermodiffusion in the r-th approximation are given 
by the formulas 

1. di(,,). [Dij]~ = [Dj~]~ ---- ~ ~,o, ( 2 . 19 )  
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t (a(.r) h~*i,o J. (2 .20)  

From (2.11) and (2.13) and expressions (2.19) and (2.20) it follows that the coefficients 
Dij and DTi s a t i s f y  the  c o n d i t i o n s  

N N 

y~Dij=O, ~]yiDr i = O .  
i = l  i = l  

Thus, in an N-component gas mixture there are :/2N(N -- i) independent coefficients of 
multicomponent diffusion and (N -- i) independent coefficients of thermodiffusion. 

We now calculate the heat flux. We have 

N N 

r n j C j  Cj/j dcj + -~  
J = l  i,j=l 

X /10)/} 1) + /~1)/}0) .+. W (lljk . . . .  /~~ k(l:j (gjl.k) dkdeidcj = 

N N N 

Z Ljqi -- ~ mi3kxiJ+ rnj VT + ]cT ~,j=l ~ Bij~ijninj(2~tij--~tiJ~tJi) vi' 
.~=1 i, "=1 

where 

~. 2 (1) . 
qJ = 3 ~ mr dcj, 

( mirn j ) 1/2 

• = 2~rkT "*i + mj njni%i~; 

and qi are the partial heat fluxes and L i is given by the formula written out after (2.3). 

If we again use expansions (2.8) and (2.9), we obtain 

Jq= -- %"VT-- nkT ~ DTj-- 
j = l  

N ) N N 
' 5 ahDj~ d~ + -Z  kT Z LFjVJ + kT Z B~Jz~jn*nj (2,u~j-- 6Vt~,aj~) V~. (2 .21 )  

j=l 15=i 

Here the coefficient X" in the r-th approximation has the form 

N N 

- -  xj~jaj'l -~ ~ ~ l - j=l ",'= 

For the reduced heat flux q we now obtain the expression 

N N 

q = J q - - ~ p j h j V j = J q - - X n  j k T + p v j  Vj. (2 .22)  
j=l j=l 

Substituting expression (2.21) for the heat flux into (2.22) and using relations (2.17) 
and (2.18) and the expression for Li, we obtain 

,l o = q = - L ' v T - n k T  ~ DTj-- (ziDij (d i + a j v l n T ) -  
j = l  

j = l  "= 

- -  aiDij VT - -  nkT ~_~ Drid i = -- )JVT -- nkT ~ DTidi, 
i=l {=I /=I 

(2.23) 
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where the coefficient %' in the r-th approximation has the form 

N 

- - - k  T (r) ~ / u i , 0  - -  %d{!o) " "  3k• . ( 2 . 2 4 )  

We can also get an expression for the total thermal conductivity. In order to do this, 
(2.23) must be rewritten in terms of VT and Vi: 

N 

q = -- %VT + nkT  ~ k r f f j .  
j = l  

Here the thermodiffusion ratios kTj are determined by 

N 

~_~ Dijl~Tj = DTi; (2.25) 
;=i 

N 

kri = O. (2.26) 
{=1 

Comparing (2.25) and (2.23), we get the following result for the thermal conductivity in 
the r-th approximation: 

N 

Now we can compare (2.18), (2.23) with (1.3), (1.4) and find relations between the co- 
efficients aij and %', DTi and Dij : 

PiPj 

T h u s ,  we h a v e  p r o v e n  t h a t  t h e  O n s a g e r  r e l a t i o n s  a r e  s a t i s f i e d  f o r  t h e  p h y s i c a l  t r a n s -  
p o r t  c o e f f i c i e n t s  o b t a i n e d  f r o m  s o l u t i o n  o f  t h e  m o d i f i e d  Enskog  e q u a t i o n  f o r  a d e n s e  g a s  m i x -  
t u r e .  

It is interesting to compare the coefficients of diffusion, thermodiffusion, and thermal 
conductivity obtained by (2.19), (2.20), and (2.24) with the transport coefficients obtained 
in [16]. This comparison was done with the system of "forces" and "fluxes" used here, and 
there was a complete correspondence in the coefficients. Below we give the relations con- 
necting the coefficients (2.19), (2.20), and (2.24) with the coefficients Lll, defined by 
formula (3.24) of [16]: 

nkT t L l o -  Lzt, pvt' 
Dz~, = PlPz---' Lu, , D~z = p-'-~ l' ml' ]" 

[ ( ) ]  u =  ' - YP : ' L, , ,  " f -  L~176 ~ "~z l' mz' 

It should be pointed out that the modification to the Enskog equation apparently affects 
the transport coefficients only to second order in the density; this corresponds completely 
to the result of [14]. In particular, it can be shown that the thermodiffusion ratio k T for 
a two-component mixture is equal to that calculated using the Thorne theory to the first ap- 
proximation in the density [14]. 

l, 

2. 
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